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Pretreatment of fibrous biomass and growth of biosurfactant-producing
Bacillus subtilis on biomass-derived fermentable sugars.

Abstract
Pretreatment of six fibrous biomasses (switchgrass, alfalfa, soy hulls, soy fiber, DDGS and Baggase) and
subsequent hydrolysis using cellulolytic enzymes at a 2.5% (v/v) and 5% (v/v) loading 2.5 (v/v) and 5% (v/
v) loading was compared for higher amounts of sugars released. Soaking of biomasses of switchgrass, alfalfa,
soy hulls and bagasse in 15% w/w ammonia was optimal at 60 °C for 12 h, followed by enzymatic hydrolysis,
yielding 72, 70, 80 and 75% carbohydrate conversions, respectively. However, soaking in ammonia was not
needed for soy fiber and DDGS as these contained very little lignin. Ultrasonication for 3 min @ 100%
amplitude (170 µM) was found to be optimal for soy fiber and DDGS from which 77 and 83% carbohydrate
conversion, respectively, was obtained following enzyme treatment at 5% (w/v) enzyme. The sugars released
by enzymatic hydrolysis of pretreated biomass were utilized as an energy source by Bacillus subtilis in
fermentation media at 2% (w/v) of concentration. In shake flask trials, cell growth was 15-20% higher on
hydrolysates of ammonia-treated switchgrass and alfalfa vs. glucose-based control media due to the presence
of a wider range of monomeric sugars (glucose, xylose, arabinose, mannose and galactose). In contrast, growth
was less on soy hull hydrolysates prepared with ammonia pretreatment.
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Abstract 

Pretreatment of six fibrous biomasses and subsequent hydrolysis using cellulolytic 

enzymes at a 2.5 % (v/v) and 5% (v/v) loading 2.5 (v/v) and 5% (v/v) loading was 

compared for higher amounts of sugars released.  Soaking  of biomasses of switchgrass, 

alfalfa, soy hulls and bagasse  in 15% w/w ammonia was optimal at 60°C for 12 h, 

followed by enzymatic hydrolysis, yielding 72%, 70%, 80% and 75% carbohydrate 

conversions respectively.  However, soaking in ammonia was not needed for soy fiber 

and DDGS as these contained very little lignin.  . Ultrasonication for 3 min @ 100% 

amplitude (170 uM) was found to be optimal for soy fiber and DDGS from which 77- and 

83% carbohydrate conversion, respectively, was obtained following enzyme treatment at 

5% (w/v) enzyme. The sugars released by enzymatic hydrolysis of  pretreated biomass 

were utilized as an energy source by Bacillus subtilis in fermentation media  2% (w/v) of 

concentration.  In  shake flask trials, cell growth was 15-20% higher on hydrolysates of 

ammonia-treated switchgrass and alfalfa  vs. glucose-based control media due to presence 

of a wider range of monomeric sugars (glucose, xylose, arabinose, mannose and 

galactose).  In contrast, growth was less on soy hull hydrolysates prepared with ammonia  

pretreatment. 

Keywords: Biomass Pretreatment, biosurfactants, liquid ammonia, ultrasonication, 

enzymatic hydrolysis, Bacillus subtilis. 
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1. Introduction  

High lignocellulosic biomass consisting of a complex network of carbohydrates and 

lignin presents a potential for monomeric sugar extraction and utilization for generation 

of bio-products.   However, crystalline structures of carbohydrates and lignin in fibrous 

biomass act as barrier to the monomeric sugar extraction as a result of limited enzymatic 

activity [1].  These challenges have largely been overcome through chemical and 

physical pretreatments of fibrous biomass both used in isolation and combination.  

Pretreatment of fibrous biomass has been shown to a) lower the lignin content b) de-

crystallize cellulosic structure, and c) increase the surface area to enhance enzymatic 

release of fermentable sugars.  Pretreatment of biomass leads to greater sugar availability 

that can be utilized to produce valuable fuel and industrial bio-chemicals through 

fermentation [2]. 

The sugars generated by pretreatment and enzymatic hydrolysis of fibrous 

biomass are primarily intended for bioethanol generation through fermentation [3].  

However, recent studies have shown that feedstocks such as frying oil wastes, glycerol 

from bio-diesel production and fermentable carbohydrates from agricultural wastes can 

be used to produce value-added biochemicals such as biosurfactants.  Surfactants are 

ampiphilic compounds that contain a hydrophilic head and a hydrophobic tail. Those 

produced by microorganisms or enzymes are known as biosurfactants, and consist of 

fatty acid chains attached to sugar moieties or a chain of amino acids that define their 

structure and function.  Biosurfactants display high dispersion- and surface tension-
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lowering ability compared to synthetically-produced, petroleum based industrial 

surfactants, and are biodegradable, thereby making them more environmentally attractive 

[4].  

Surfactin is a biosurfactant commonly produced as a secondary metabolite by the 

bacterium Bacillus subtilis subspecies subtilis.  It is a cyclic lipopeptide consisting of a 

fatty acid chain of 12-14 carbons linked to a cyclic heptapeptide.  It is one of the most 

powerful biosurfactant and can lower the surface tension of water from 72 mN/m to 27 

mN/m at a low concentration of 20µM [5]. Although it has excellent surface tension 

lowering capacity, it has low water solubility due to the presence of hydrophobic amino 

acids in the cyclic amino acid chain [5]. Modular Genetics, Inc. (Woburn, MA) has 

produced a surfactin variant with higher water solubility using a genetically-modified 

strain derived from the surfactin-producing B. subtilis.  The variant has been termed Fatty 

Acyl-Glutamate (FA-Glu) [6] and differs in having a single glutamic acid residue instead 

of surfactin’s heptapeptide.   

Studies have shown that biosurfactants such as fengycins, surfactin and surfactin 

variants can be successfully produced by bacteria grown on a variety of feedstocks 

containing 2-7% (w/v) carbon from agricultural by- products and feedstocks.  Thavasi et 

al (2011) utilized 2% (w/v) peanut oil concentration to produce 5.35 g/L of a surfactin-

like biosurfactant.  De Faria et al (2011) reported producing 230 mg/L of surfactin 

(C14/Leu7) by utilizing 5% w/v of biodiesel-derived glycerol as the sole carbon source [5, 

7, 8 ] Such studies have shown the techno-economic and environmental benefits of 

cellulosic carbon sources over glucose [6].  Although, a  wide range of titers on different 

carbon sources has been reported [4, 5, 8, 9], the abundance and of fibrous feedstocks 
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justifies effortsto optimize biosurfactant production by fermentation of non-conventional 

feedstocks such as composite hydrolysates derived from these sources.  The choice of 

feedstock pretreatment and hydrolysis protocols  is key in obtaining high monosaccharide 

and minimizing inhibitory compounds in hydrolysates. 

Liquid ammonia pretreatment is one of the most effective delignification 

techniques and has been used to pretreat fibrous and ligncellulosic biomass such as corn 

stover [10]. Ultrasonication is a physical pretreatment method that has been relatively 

unexplored but has potential to alter biomass structure by de-crystallizing the cellulosic 

matrix with maximum retention of biomass and polysaccharides initially present [11]. 

Both pretreatment techniques were utilized singly and in combination on six fibrous 

feedstocks to determine the optimum pretreatment conditions.  These were then used to 

generate soluble sugars that were substituted for glucose in bacterial growth media.  

In this study, biomass pretreatment conditions (i.e. Ammonia concentration and solid 

loading) were chosen from the work of Kim et al (2003).Optimization of the reaction 

time, pretreatment temperature and enzymatic loading was performed for hydrolysate 

preparation. Hydrolysates derived from these materials were then tested as carbon 

sources for the growth of biosurfactant-producing strains of B. subtilis.  Using a variety 

of monosaccharides in biomass hydrolysates as an energy source presents a potential to 

assess growth of surfactant-producing bacteria for sustainability of the process [12]. 

Materials and methods 

2.1 Materials  
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Six fibrous feedstocks were utilized in this study, namely switchgrass (SW), alfalfa (AA), 

bagasse (BG), soy hulls (SH), soy fiber (SF) and distillers’ dry grains with soluble 

(DDGS). Switchgrass and alfalfa were harvested in June 2010 and August 2010 

respectively from the Bio Century Research Farm, Iowa State University.  Soy hulls were 

obtained from Processing, Inc., Eagle Grove, IA. Soy fiber was obtained from an 

integrated countercurrent 2-stage Enzyme-Assisted Aqueous Extraction Process (EAEP) 

after separating the soy skim, and frozen at -20°C [13].  DDGS was obtained from 

Lincolnway Energy (Nevada, IA). Bagasse from the 2012 sugarcane harvest was 

obtained from the Agricultural Center at Louisiana State University.   All feedstocks were 

dried in a convection step oven at 105°C for 12 h, ground to 2mm particle size in a Wiley 

ball mill and stored in Ziploc bags at 25°C. The enzymes cellulase (NS22086), 

hemicellulase (NS22083) and a mix of pectinase/arabinase/xylanase enzymes (NS22119), 

were obtained from Novozymes, Inc., Franklinton, NC.  The activities for these three 

enzymes were 1000 BHU (2)/g, 2500 FXU-S/g, 13700 PGU/g (Novozyme © NS22086, 

NS22083, and NS22119, respectively).  The surfactant producing strains Bacillus subtilis 

T1651 and the Bacillus subtilis E4088 were obtained from Modular Genetics Inc., 

Woburn, MA.   

2.2 Selection of best conditions for pretreatment and enzyme loading for highest 

carbohydrate conversion 

Initially both liquid ammonia preatreatment and ultrasonication were used for each 

feedstock separately   Liquid ammonia pretreatment consisted of soaking each of the six 

feedstocks in aqueous ammonium hydroxide solution, wherein five gram of ground, dried 

biomass were mixed with 55 mL of 15% (v/v) ammonium hydroxide solution in 250-mL 
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screw cap Erlenmeyer flasks.  They were heated at 40, 60 and 80°C in a water bath for 12 

h, and at 121°C in an autoclave for 1 h.  Samples were cooled to room temperature, then 

vacuum filtered to remove all liquid.  During filtration the slurries were washed with cold 

deionized distilled water (DDW) to remove the ammonia as verified by monitoring the 

filtrate pH till it was that of wash water.  The filtered solid biomass was then weighed and 

packed into Ziploc bags and stored at 4°C as per National Renewable energy laboratory’s 

laboratory analytical protocol recommendations for enzymatic hydrolysis of pretreated 

samples [14, 15].  All reactions were performed in triplicates. 

 The ultrasonication pretreatment was then performed on all six feedstocks in a 

BRANSON© 2000 EA ultrasonicator with a 1:1.25 booster.  Five gram of fresh dried 

feedstock were mixed with 50 mL of deionized distilled water in 250-mL beaker kept in 

an ice bath to prevent heat buildup due to the sonication process [11]. Ultrasonication 

was performed for 1 and 3 min respectively and the pretreated slurries were filtered, 

stored and weighed in the same manner as described above.  Moisture content was 

determined in a convection oven at 105°C for 12 h.  Two g equivalent dry solids of 

pretreated samples were suspended in 50-mL of 0.1 M Na-acetate buffer, pH 5.0 in a 

250-mL screw-capped Erlenmeyer flask, then hydrolyzed in a 1:1:1 mixture of enzymes 

at loadings of 2.5% and 5% (w/v) for 24 h in shaker-incubator at 50°C, 150 rpm.   

The hydrolysate supernatants and the residual solids were weighed and stored in Ziploc 

bags at -20°C. Carbohydrate conversion was defined as the conversion of biomass solids 

to soluble feedstocks (CHO), based on the starting dry weight CHO content. It has been 

defined as the ratio of milligrams of total carbohydrate extracted from one-gram dry 
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pretreated biomass to the milligrams of total carbohydrate in one- gram dry un-pretreated 

biomass. 

2.3 Preparation of hydrolysate media 

Best pretreatment combinations of liquid ammonia treatment and ultrasonication specific 

to each feedstock were selected based on maximum carbohydrate conversions.  These 

were scaled up to generate larger volumes of hydrolysate to meet growth media 

requirements for the two Bacillus subtilis strains.  Thirty g dried, ground feedstock was 

first treated with 330 mL of 15% ammonium hydroxide (v/v) with ammonia. This 

pretreated slurry was then ultrasonicated for 3 minutes. Ten g of dry equivalent of the wet 

recovered biomass after ultrosonication, by calculating the moisture content in these 

samples, were then hydrolyzed at the optimum enzyme loading of 5% (w/v). The 

hydrolysates were analyzed for total feedstocks and substituted for glucose equivalent of 

2% feedstocks in the growth media. 

.  

2.4 Growth and fermentation of Bacillus subtilis strains on hydrolysates and glucose 

based media. 

A glucose-based control growth media, termed S-7 media, was utilized for Bacillus 

subtilis growth. The complete S-7 medium contained (per liter) 2.18 g KH2PO4, 14.63 g 

K2HPO4, 1.32 g (NH4)2SO4, 2.94 g glutamic acid,  20 g glucose,  0.73 mg HCl, 0.49 g 

MgCl2-6H2O, 14.7 mg CaCl2.2H2O, 9.9 mg MnCl2-4H2O, 0.14 mg ZnCl2, 1.35 mg 

FeCl3-6H2O and 0.67 mg thiamine-HCl. A solution containing phosphate buffer salts (pH 

7.5) and ammonium sulfate was prepared and separately sterilized by autoclaving. [7 
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Prior to inoculation in S-7 media inocula were prepared by growing the cells overnight in 

seed media at containing 0.6% Na2HPO4, 0.3% KH2PO4, 0.05% NaCl, 0.1% NH4Cl, 

0.3% yeast extract at 30° C and 170 rpm in an Innova 4300 shaker-incubator to an initial 

A650 of 0.01-0.1.  A total volume of 50 mL fermentation media was used in all 

experiments including glucose- and hydrolysate based media, all at 2% (w/v) sugar level, 

with 0.2 mL inocula volume.  Hydrolysate-based media were prepared by measuring the 

volume that would contain sugars equivalent to 2% (w/v) in the final media. The enzyme 

hydrolysates were heated for 100°C for 15 min to deactivate the enzymes present prior to 

media preparation. Fermentations were carried for 72 h at 37° C and 170 rpm in an 

Innova 4300 shaker-incubator (Eppendorf, New Jersey, NJ). As growth absorbance of a 

bacterial culture is a good indicator cell density and growth, periodic sampling of 

fermentation cultures was done and growth determined by measuring the absorbance at 

650 nm [16]. 

2.5 Analytical tests 

Untreated raw fibrous feedstock biomass was analyzed total lignin content (%w/w)% 

moisture of oven-dried biomass (%w/w) according to the NREL LAP procedure.  The 

moisture content was measured by heating samples for 24 h at 105°C in convection oven 

[14]. Total carbohydrate content in the hydrolysates was analyzed by the Phenol-

Sulphuric acid assay from Dubois et al (1956) [17]. This assay involved adding, 0.5 mL 

5% phenol solution to 0.5 mL of sample, followed by 2.5 mL 18M H2SO4.  The resulting 

mixture was cooled and vortexed before measuring the absorbance at 490 nm.  Sugars in 

the hydrolysates were measured by HPLC conducted isocractically with 0.005 M 
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sulphuric acid as the mobile phase on an Accela 60057 HPLC unit equipped with a 

HyperREZXP carbohydrate H+ 8 µm column (Fischer Scientific) 

2.6 Statistical Analysis 

SAS © 9.4 version was used to conduct the Tukey’s least square means analysis for 

pairwise comparisons for all small scale pretreatment experiments to determine the 

statistically significant higher values of carbohydrate conversion at a significance level of 

p<0.05. 

3. Results and Discussion 

3.1 Compositional analyses of untreated fibrous biomasses  

Compositional analyses of untreated fibrous feedstock (Table 1), shows the moisture 

content, acid soluble- and acid insoluble lignin and total feedstocks content of 6 untreated 

feedstocks. These had average moisture content of 5.7% after 48 h of heating.  The 

highest % total acid soluble- and % total acid insoluble lignin were found to be in 

switchgrass at 3.47 ± 0.2 and 22.3±1.3% and, respectively.  

Feedstock selection was based on a range of lignin- and carbohydrate content for 

optimizing pretreatment conditions.  Switchgrass, alfalfa and bagasse had the highest 

lignocellulosic contents which that reflected the maximum carbohydrate yields that could 

be achieved post pretreatment and enzymatic hydrolysis. Sugars were more easily 

extracted from feedstocks with less, e.g., soy hulls and soy fiber; carbohydrate was less 

easily extracted from DDGS as its overall total carbohydrate content was the lowest 

compared to other feedstocks.     
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3.2 Optimization of pretreatment scheme 

Soy fiber and DDGS received no ammonia pretreatment as most of the solid biomass 

from this material dissolved in 15% liquid ammonia and solid recoveries of <20% were 

obtained during preliminary experiments. Pretreatment optimization for the other four 

feedstock resulted in maximum carbohydrate conversions at 60°C and 5% (w/v) enzyme 

loading. Feedstock carbohydrate conversions from the four ammonia-pretreated 

feedstocks were significantly (p<0.05) better at (5% w/v) enzyme loading compared to 

2.5% enzyme loading (Table 2). For switchgrass, alfalfa, soy hulls and bagasse, the 

optimum treatment combination was at ammonia at 600C and 5% (w/v) enzyme loading  

For soy fiber, optimum pretreatment was ultrasonication for 3 min at 100% amplitude 

(170 µm) at 5% (w/v) enzyme loading  With DDGS, sonication for 3 min at 5% (w/v) 

enzyme loading was shown to be optimal.  Although there was no significant difference 

between 1- and 3 min sonication, the longer time produced lower standard deviations 

among replicates.   These results could be attributed to lignin reduction and opening up of 

the lignocellulosic matrix for enhanced enzymatic activity. Ultrasonication pretreatment, 

not involving any liquid ammonia treatment for switchgrass, alfalfa, soy hulls and 

bagasse generated very low CHO yields similar to those of the un-pretreated enzyme 

hydrolyzed controls at 1- and 3 min, indicating that there was no significant pretreatment 

effect of sonication on lignocellulosic biomass.  Some of the pretreatment combinations 

tested (e.g. for soy fiber, soy hulls and DDGS) have not been conducted prior to this 

study.  However, liquid ammonia pretreatment of corn stover was done by Kim et al 

(2003) who observed 85-96% (w/w) carbohydrate conversions in 72 h hydrolysates (Kim 
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et al., 2003), compared with our results of 65-80% (w/v) carbohydrate conversions yields 

after 24 h.   As such, their data are in accordance with ours [10]. 

 Pretreatment conditions optimized for switchgrass, alfalfa, soy hull and bagasse 

were combined with 3 min sonication at 100% amplitude to achieve the best results. For 

DDGS and soy fiber only sonication was used, as ammonification of this material results 

in intolerable loss of solids.  When treatment combinations were scaled up to 30g 

samples, the feedstock carbohydrate conversions were :a) switchgrass- 59.38 ± 3.6% b) 

alfalfa- 60.38 ± 1.8 % c) soy hulls- 84.5% ± 3.9 d) soy fiber  - 80.08 ± 3.8% e) DDGS- 

60.37±10.8, and f) Bagasse 60.2 %.  These values are consistent with data from smaller 

scale trials where higher carbohydrate conversions were achieved with feedstocks 

containing lower lignin content.  The lower conversions for switchgrass, alfalfa, and 

bagasse could  be attributed significantly  higher lignin content compared to other three 

biomasses and   to greater losses during total solid recovery during washing and filtration 

compared to the lower 5g scale experiments. As more washing steps were involved in 

getting the pH close to neutral for 30 g samples, higher losses were incurred during 

particle scraping and recovery.  

3.3 Distribution and utilization of hydrolysate sugars 

Table 3 shows the sugar composition of hydrolysates of pretreated and unpretreated 

feedstocks. Glucose is the most abundant sugar in the pretreated hydrolysates; other 

sugars such (e.g., xylose, arabinose, galactose and mannose) were released by enzymatic 

hydrolysis following pretreatment.. Switchgrass, alfalfa and bagasse had similar 

monosaccharide compositions consistent with date from Xu et al (2010), Srikanth et al 
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(1999) and Da Silva et al (2013) who observed high post- pretreatment yields of glucose 

[18, 19, 20].Pre-treated soy hull hydrolysates had nearly identical percentages of glucose, 

xylose and mixed sugars, which agree with data, obtained from extruded soy hulls by 

Karuppuchamy and Muthukumarappan (2013) [21].  .   HPLC analyses of sugars from 

pretreated DDGS and soy fiber also showed similar trend towards maximum glucan 

conversion as previously observed.  The presence of multiple monomeric sugars 

dominated mostly by glucose in all hydrolysates provided for simultaneous uptake by the 

bacterial strains or possible competitive uptake that could lead to differences in growth 

patterns.   

3.4 Bacterial growth on biomass hydrolysates 

 Fifty-mL shake flask fermentations biomass hydrolysates included controls that were 

enzymatically hydrolyzed without any pretreatment..  They contained insufficient soluble 

sugars to meet the 2% (w/v) carbohydrate requirement of the media. Media containing 

2% (w/v) glucose were also included for comparison except for un-pretreated soy hulls 

and soy fiber.  Maximum absorbance in all shake flasks was 29 h.  The absorbance data 

(Fig 1) suggest that availability of glucose was essential to the growth of the surfactin-

producing Bacillus strain; the CSH60 treatment combination for soy hulls 

consistedcontained more xylose (on a percentage distribution basis), compared to very 

little xylose present in the enzyme treated hydrolysate of un-pretreated soy hulls followed 

by alfalfa. Growth in both hydrolysates (Fig1) exceeded that of the glucose control at 

same carbon levels. Switchgrass and alfalfa hydrolysates showed a similar trend where a 

preponderance of glucose and availability to other hexose sugars in hydrolysates and 

lower pentose concentrations resulted in better cell growth as indicated by 15-20% higher 
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absorbance values than the glucose control.  In the ammonia pretreated hydrolysates, 

maximum growth for both B. subtilis strains was observed for switchgrass. .   

Growth in soy hull hydrolysates after ammonia pretratement and enzyme. The lower 

growth on pretreated soy hull hydrolysates could be due to the presence of possible 

inhibitors formed during alkaline pretreatment. In an earlier study by Reznik et al (2008) 

unhydrolyzed, ground unpretreated soy hulls were utilized as a carbon source and better 

growth of an FA-Glu producing strain of B. subtilis on glucose containing media was 

observed [6]. .  Alternatively, an equal distribution of pentoses and hexoses resulting in 

competitive metabolic uptake could be responsible (Van Foseen et al., 2009) [22]. (Table 

2) Since growth on unpretreated and enzyme-treated soy hull and soy fiber (Fig 2) was 

higher than on 2% (w/v) glucose, the lower growth absorbance on soy hull preatreated 

hydrolysates could be attributed to the severity of the pretreatment on decreased 

conversion of glucose.  As observed with switchgrass and alfalfa, growth on pretreated 

DDGS and bagasse hydrolysates was significantly higher than the glucose control; this 

could also be attributed to the higher percentage of glucose in the media. 

 

4. Conclusion  

Pretreatment conditions for six unutilized and under-utilized feedstocks were used to 

facilitate their use as fermentation feedstocks. Pretreatment optimization of these 

feedstocks was conducted and hydrolysates of the latter containing monosaccharaides 

mixtures were tested for growth of biosurfactant producing bacteria.  In shake flask trials 

cell growth was 15-20% higher on pretreated switchgrass and alfalfa hydrolysates vs. 2% 
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(w/v) glucose and other feedstocks. The significance of this study is that both 

biosurfactant producing strains were shown to grow on different compositions of 

monomeric sugars from hydrolysates. It was shown that hydrolysates of alfalfa, 

switchgrass and bagasse are better at promoting growth of B. subtilis strains than other 

cellulosic biomasses. This provides a good platform to evaluate the growth patterns of 

bacteria for producing value-added chemicals and to gain a better understanding of 

optimization of the required feedstock pretreatment. Evaluation of product titers will 

provide a clearer assessment of the choice of feedstock to achieve higher yields and 

economic sustainability.  
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List of  tables and figures.  

1. Table 1. Composition of raw fibrous switchgrass (SW), alfalfa (AA), soy hulls (SH), soy 

fiber (SF), and distillers’ dry grains with solubles (DDGS) based on dry weight of 

unpretreated biomass Values shown are % of control. 

2. Table 2. Cabohydrate conversions for all pretreatment combinations along with Tukey LS 

means indicators for statistical significance. SW-switchgrass, AA- alfalfa, SH-soy hulls, 

SF- Soy fiber, BG-bagasse, DDGS- dry distiller’s grain solubles. Carbohydrate 

conversion has been defined as ratio mg/gm total carbohydrate extracted from enzyme 

hydrolyzed pretreated biomass/mg/gm of total carbohydrate present in un-pretreated dry 

biomass. Solid recovery is defined as g dry weight of pretreated biomass recovered/g dry 

weight of untreated biomass. 

3. Table 3. Sugar compositions of hydrolysates (mg sugar /g dry biomass) as measured with 

HPLC.  

a) CSW60- Combined pretreated switchgrass at 60C and 

ultraosonicated for 3 min and enzyme loading of 5% (w/v). 

b) CAA60- Combined pretreated alfalfa at 60C and ultraosonicated 

for 3 min and enzyme loading of 5% (w/v). 

c) CSH60- Combined pretreated soy hulls at 60C and 

ultraosonicated for 3 min and enzyme loading of 5% (w/v). 

d) USF3- Ultrasonicated soy fiber for 3 mins and enzyme loading at 

5% (w/v) 
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e) UDD3-Ultrasonicated DDGS for 3 mins and enzyme loading at 

5% (w/v) 

f)  CSBG60- Combined pretreated bagasse at 60C and 

ultraosonicated for 3 min and enzyme loading of 5% (w/v) 

g)  All UT combinations are hydrolysates of un-pretreated 

feedstocks at 5%  (w/v) enzyme loading. 

 

4. Figure 1. Comparison of growth (Absorbance at 650 nm) of B. subtillis T5161 (a) and B. 

subtillis E4088 (b) on glucose vs. combined pretreated of SW, AA, SH and BG. In all 

media, carbohydrate concentrations were 2% (w/v) (SW-Switchgrass, AA-alfalfa, SH- 

Soy hulls, BG- Bagasse) 

5. Figure 2. Comparison of growth (Absorbance 650 nm) of B. subtillis T5161 (a) and B. 

subtillis E4088 (b) on glucose vs. ultraosonicated hydrolysates of SF and DDGS. In all 

media, carbohydrate concentrations were 2% (w/v) (SF- Soy Fiber, DDGS- Dry 

Distiller’s grain solubles). 

6. Figure 3. Growth profiles of  (Absorbance 650 nm) of B. subtillis T5161 and B. subtillis 

E4088 (b) on un-pretreated, enzyme hydrolyzed hydrolysates from Soy hulls and Soy 

Fiber. All other feedsctocks did not generate sufficient carbohydrates without 

pretreatment.  

 S-UPSH – Unpretreated hydrolyzate of Soy Hulls for growth of B. subtillis T5161 

S-UPSF- Unpretreated hydrolyzate of Soy FIber for growth of B. subtillis T5161 

F-UPSH- Unpretreated hydrolyzate of Soy Hulls for growth of B. subtillis E4088 
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F-UPSF- Unpretreated hydrolyzate of Soy fiber for growth of B. subtillis E40
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Table 1 3 

 4 

 5 

6 

Component SW AA SH SF DDGS Bagasse 

Moisture 7.8±0.4 6.3±1.1 3.4±0.22 7.7%±0.8 2.3±1.1 6.8±1.7 

Acid soluble lignin 3.47 ± 0.2  2.45 ± 1.2 0.41 ± 0.1 0.003 ± 0.0 0.77 ± 0.0 1.39 ± 0.5 

Acid insoluble 

lignin 22.31 ± 1.3 19.34 ± 1.1 4.22 ± 1.7 1.1 ± 0.0 5.84 ± 1.0 19.45 ± 1.4 

Total 

carbohydrate 80.61 ± 2.7 80.15  ± 1.5 73.38 ± 2.0 77.15 ± 3.7 43.74 ± 2.0 83.17 ± 3.5 
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Table 2 8 

Treatment Biomass Enzyme 
loading 

(%) 

Solid Recovery % Conversion 

No pretreatment, enzymatic hydrolysis only 

SW  
 

2.5 

N/A 15.8±5.7op 
AA N/A 18.5 ± 2.3op 
SH N/A 31.0±  4.3hijklmnop 
BG N/A 22.3 ± 3.9mnop 
SF N/A 44.8 ± 3.5efghij 
DD N/A 32.0 ± 9.0hijklmnop 
SW  

 
5 

N/A 40.8 ± 3.2op 
AA N/A 24.2 ± 2.4op 
SH N/A 24.2 ± 3.6hijklmnop 
BG N/A 22.9 ± 2.3mnop 
SF N/A 51.0 ± 8.0efghij 
DD N/A 51.6 ± 12.8hijklmnop 

AMMONIA PRETREATMENT AT 40°C 

SW  
 

2.5 
 
 
 

80.3±3.6 43.6 ± 6.0efghijk 
AA 79.8± 3.2 37.6 ± 7.3efghijklmn 
SH 65.4 ±4.9 44.1 ± 3.0efghijk 

BG 70.2 ± 6.7 15.7 ± 2.8p 

SW 5 80.3±3.6 40.9 ± 4.0cdef 
AA 79.8± 3.2 44.5 ± 5.7efghijk 
SH 65.4 ±4.9 72.4 ± 2.4ab 
BG 70.2 ± 6.7 41.4 ± 3.5efghijkl 

AMMONIA PRETREATMENT AT 60°C 

SW  
 

2.5 
 
 
 

80.3±3.6 38.8 ± 1.7efghijklm 
AA 79.8± 3.2 31.3 ± 3.9hijklmnop 
SH 65.4 ±4.9 52.0 ± 2.1cdefg 

BG 70.2 ± 6.7 37.9 ± 4.8efghijklmn 

SW 5 80.3±3.6 72.4 ± 2.3ab 
AA 79.8± 3.2 71.6 ± 4.5ab 
SH 65.4 ±4.9 74.2 ± 4.3ab 
BG 70.2 ± 6.7 65.1 ± 2.8bc 

AMMONIA PRETREATMENT AT 80°C 

SW  
 

2.5 
 
 
 

62.3 ± 3.7 33.1 ± 7.1ghijklmnop 
AA 68.3 ± 4.2 25.7 ± 4.0klmnop 
SH 64.1±1.9 40.9 ± 5.8efghijklm 

BG 54.8±3.4 30.9 ± 1.3hijklmnop 

SW 5 62.3 ± 3.7 53.6 ±7.0cde 
AA 68.3 ± 4.2 46.6 ± 20.8 hijklmnop 
SH 64.1±1.9 64.1 ± 8.7bc 
BG 54.8±3.4 65.1 ± 2.8bc 

AMMONIA PRETREATMENT AT 121°C 

SW  
 

2.5 
 
 
 

53.8± 3.9 26.3 ± 6.5jklmnop 
AA 43.5 ± 4.0 24.1 ± 6.2lmnop 
SH 40.2± 7.8 33.2±25.0 efghijklmnop 

BG 42.1 ± 5.6 17.6 ± 1.6op 

SW 5 53.8± 3.9 27.6 ± 6.8ijklmnop 
AA 43.5 ± 4.0 31.7 ± 7.0hijklmnop 
SH 40.2± 7.8 43.9 ± 11.4efghijk 
BG 42.1 ± 5.6 19.8 ± 1.1nop 

ULTRASONICATION 1 MIN 

SF 
2.5 

 
 
 

89.4 ± 3.4 48.6± 14.9cdefgh 

DD 90.3 ±1.5 19.2 ± 2.9nop 
SF 5 89.4 ± 3.4 83.2 ± 1.4a 
DD 90.3 ±1.5 49.9±20.0cdefgh 

ULTRASONICATION 3 MIN 
SF 

2.5 
 
 
 

90.4 ± 3.6 49.8 ± 9.3cdefgh 

DD 89. 5 ± 2.3 18.5 ± 2.1op 
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SF 5 90.4 ± 3.6 49.8 ± 9.3a 
DD 89. 5 ± 2.3 18.5 ± 2.1efghi 

 9 

 10 

11 
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Table 3  13 

 Sugar Content (mg/g biomass) 

Pretreatment 

 

Glucose  Xyglose Arabinose  Galactose  Mannose  

CSW60 338.5 ± 10.5 186.5  ± 8.0 7.4  ± 0.5 0 0 

CAA60 304.5 ± 14.3 130.5 ± 8.1 29.9  ± 2.2 0 0 

CSH60 292.8± 51.7 252.1±11.8 59.9  ± 5.2 213.2.± 13.5 0 

USF3 471.5±6.3 1.9 ± 0.0 

234.7± 

13.5 0 0 

USDD3 222.4 ± 2.5 45.4±3.3 21.6  ± 2.9 0 0 

CSBG3 275.2 ± 8.3 128.6 ± 6.7 1.6  ±  0.0 0 0 

UTSW 275.2± 24.9 117.9 ± 3.9 9.9 ± 1.7 0 0 

UTAA 345.2 ± 10.7 68.2 ± 2.9 1.6 ± 0.8 0 89.2 ± 13.4 

UTSH 291.8 ± 8.4 1.9 ± 0.0 48.2  ± 4.8 210.9 ± 4.8 0 

UTSF 215.6 ± 12.8 43.1 ± 2.8 31.6   ± 4.1 0 0 

UTDD 319.6 ± 25.6 0 

132.6  ± 

8.1 0 0 

CSW60, CAA60, CSH60, CBG60, USF3 & UDD3 are combined optimized pretreatment hydrolyzates of the biomass.  14 
UTSW, UTAA, UTSH, UTSF and UTDD are unpretreated controls. 15 
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